Adopting Natural Host Immune Response Against Zoonosis
PDF

Keywords

Zoonosis
EIDs
interferons
cytokine
SARS-CoV-2

How to Cite

Helisa, Y. N. ., & Winangkoso, H. . (2022). Adopting Natural Host Immune Response Against Zoonosis. Journal of Education, Management and Development Studies, 2(1), 52–66. https://doi.org/10.52631/jemds.v2i1.67

Abstract

Zoonosis originated from the transmission of pathogens between species. Rapid mutation causes the pathogens to develop resistance to treatments. Thus, there is an urgent need for medications that could maintain efficacy when encountering new strains. This study aims to discern the possibility of overcoming threats from EIDs by recreating immune responses of natural hosts and reinforcing them in the human system. The methodology used is literature study, as the resarcher utilized data presented by similar studies. References will be taken from clinical trials and studies on related topics from PubMed, ResearchGate, and NCBI. Within multiple research papers, it was found that several experts support the idea of mimicking hosts' immunity through the use of interferon. Treatments with IFN-2b significantly reduce viral infection of SARS-CoV-2 in the upper respiratory tract and increase blood levels of inflammatory markers, according to research conducted in Wuhan. Similar results apply in other trials, proving that interferon managed to contain the invasion of pathogens. This is shown through a reduction in the severity of infections, the duration of viral clearance, and levels of mortality. The results conclude that the use of interferon benefits the patient’s recovery progress by mimicking the natural host’s immune response and heightening the viral clearance rate. More research needs to be done to explore the effect of excessive IFN-$\alpha$/$\beta$ usage on immunity.

https://doi.org/10.52631/jemds.v2i1.67
PDF

References

Ahn, M., Cui, J., Irving, A. T., & Wang, L.-F. (2016, February). Unique Loss of the PYHIN Gene Family in Bats Amongst Mammals: Implications for Inflammasome Sensing. Scientific Reports, 6(1), 21722. Retrieved 2022-02-14, from http:// www.nature.com/articles/srep21722 doi: 10.1038/srep21722

Alavi Darazam, I., Shokouhi, S., Pourhoseingholi, M. A., Naghibi Irvani, S. S., Mokhtari, M., Shabani, M., ... Khoshkar, A. (2021a, December). Role of interferon therapy in severe COVID-19: the COVIFERON randomized controlled trial. Scientific Reports, 11(1), 8059. Retrieved 2022-02-14, from http://www.nature.com/articles/s41598-021-86859-y doi: 10.1038/s41598-021-86859-y

Alavi Darazam, I., Shokouhi, S., Pourhoseingholi, M. A., Naghibi Irvani, S. S., Mokhtari, M., Shabani, M., ... Khoshkar, A. (2021b, December). Role of interferon therapy in severe COVID-19: the COVIFERON randomized controlled trial. Scientific Reports, 11(1), 8059. Retrieved 2022-02-14, from http://www.nature.com/articles/s41598-021-86859-y doi: 10.1038/s41598-021-86859-y

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular Biology of the Cell (4th ed.). Garland Science.

Ayllon, J., & García-Sastre, A. (2014). The NS1 Protein: A Multitasking Virulence Factor. In M. B. A. Oldstone & R. W. Compans (Eds.), Influenza Pathogenesis and Control - Volume II (Vol. 386, pp. 73–107). Cham: Springer International Publishing. Retrieved 2022-02-14, from http://link.springer.com/10.1007/82_2014_400 doi: 10.1007/822014400

Baker, M. L., Schountz, T., & Wang, L.-F. (2013, February). Antiviral Immune Responses of Bats: A Review: Antiviral Immune Responses of Bats. Zoonoses and Public Health, 60(1), 104–116. Retrieved 2022-02-14, from https://onlinelibrary.wiley.com/doi/10.1111/j.1863-2378.2012.01528.x doi: 10.1111/j.1863-2378.2012.01528.x

Barber, G. N. (2015, December). STING: infection, inflammation and cancer. Nature Reviews Immunology, 15(12), 760–770. Retrieved 2022-02-14, from http://www.nature.com/articles/nri3921 doi: 10.1038/nri3921

Beaumier, C. M., Harris, L. D., Goldstein, S., Klatt, N. R., Whitted, S., McGinty, J., ... Brenchley, J. M. (2009, August). CD4 downregulation by memory CD4+ T cells in vivo renders African green monkeys resistant to progressive SIVagm infection. Nature Medicine, 15(8), 879–885. Retrieved 2022-02-14, from http://www.nature.com/articles/nm.1970 doi: 10.1038/nm.1970

Cameron, M. J., Bermejo-Martin, J. F., Danesh, A., Muller, M. P., & Kelvin, D. J. (2008a, April). Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Research, 133(1), 13–19. Retrieved 2022-02-14, from https://linkinghub.elsevier.com/retrieve/pii/S0168170207000548 doi: 10.1016/j.virusres.2007.02.014

Cameron, M. J., Bermejo-Martin, J. F., Danesh, A., Muller, M. P., & Kelvin, D. J. (2008b, April). Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Research, 133(1), 13–19. Retrieved 2022-02-14, from https://linkinghub.elsevier.com/retrieve/pii/S0168170207000548 doi: 10.1016/j.virusres.2007.02.014

Cockrell, C., & An, G. (2021, August). Comparative Computational Modeling of the Bat and Human Immune Response to Viral Infection with the Comparative Biology Immune Agent Based Model. Viruses, 13(8), 1620. Retrieved 2022-02-14, from https://www.mdpi.com/1999-4915/13/8/1620 doi: 10.3390/v13081620

Czaja, A. J. (2014). Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World Journal of Gastroenterology, 20(10), 2515. Retrieved 2022-02-14, from http://www.wjgnet.com/1007-9327/full/v20/i10/2515.htm doi: 10.3748/wjg.v20.i10.2515

Dandekar, A. A., & Perlman, S. (2005, December). Immunopathogenesis of coronavirus infections: implications for SARS. Nature Reviews Immunology, 5(12), 917–927. Retrieved 2022-02-14, from http://www.nature.com/articles/nri1732 doi: 10.1038/nri1732

Ferrero-Miliani, L., Nielsen, O. H., Andersen, P. S., & Girardin, S. E. (2007, January). Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1 generation. Clinical and Experimental Immunology, 147(2), 227–235. Retrieved 2022-02-14, from https://academic.oup.com/cei/article/147/2/227/6457250 doi: 10.1111/j.13652249.2006.03261.x

Fisher, C. R., Streicker, D. G., & Schnell, M. J. (2018, April). The spread and evolution of rabies virus: conquering new frontiers. Nature Reviews Microbiology, 16(4), 241–255. Retrieved 2022-02-14, from http://www.nature.com/articles/nrmicro.2018.11 doi: 10.1038/nrmicro.2018.11

Fleischmann, W. R. (1996). Viral Genetics. In S. Baron (Ed.), Medical Microbiology (4th ed.). Galveston (TX): University of Texas Medical Branch at Galveston. Retrieved 2022-02-14, from http://www.ncbi.nlm.nih.gov/books/NBK8439/

Groslambert, M., & Py, B. F. (2018, September). Spotlight on the NLRP3 inflammasome pathway. Journal of Inflammation Research, 11, 359–374. Retrieved 2022-02-14, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161739/ doi: 10.2147/JIR.S141220

Haji Abdolvahab, M., Moradi-kalbolandi, S., Zarei, M., Bose, D., Majidzadeh-A, K., & Farahmand, L. (2021, January). Potential role of interferons in treating COVID-19 patients. International Immunopharmacology, 90, 107171. Retrieved 2022-02-14, from https://linkinghub.elsevier.com/retrieve/pii/S1567576920336389 doi: 10.1016/j.intimp.2020.107171

Hayward, J. A., Tachedjian, M., Cui, J., Cheng, A. Z., Johnson, A., Baker, M. L., ... Tachedjian, G. (2018, July). Differential Evolution of Antiretroviral Restriction Factors in Pteropid Bats as Revealed by APOBEC3 Gene Complexity. Molecular Biology and Evolution, 35(7), 1626–1637. Retrieved 2022-02-14, from https://academic.oup.com/mbe/article/35/7/1626/4956644 doi: 10.1093/molbev/msy048

Hon, C.-C., Lam, T.-Y., Shi, Z.-L., Drummond, A. J., Yip, C.-W., Zeng, F., ... Leung, F. C.-C. (2008, February). Evidence of the Recombinant Origin of a Bat Severe Acute Respiratory Syndrome (SARS)-Like Coronavirus and Its Implications on the Direct Ancestor of SARS Coronavirus. Journal of Virology, 82(4), 1819–1826. Retrieved 2022-02-14, from https://journals.asm.org/doi/10.1128/JVI.01926-07 doi: 10.1128/JVI.01926-07

Irving, A. T., Ahn, M., Goh, G., Anderson, D. E., & Wang, L.-F. (2021, January). Lessons from the host defences of bats, a unique viral reservoir. Nature, 589(7842), 363–370. Retrieved 2022-02-14, from http://www.nature.com/articles/ s41586-020-03128-0 doi: 10.1038/s41586-020-03128-0

Iwasaki, A. (2012, October). A Virological View of Innate Immune Recognition. Annual Review of Microbiology, 66(1), 177–196. Retrieved 2022-02-14, from https://www.annualreviews.org/doi/10.1146/annurev-micro-092611-150203 doi: 10.1146/annurev-micro-092611-150203

Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008, February). Global trends in emerging infectious diseases. Nature, 451(7181), 990–993. Retrieved 2022-02-14, from http://www.nature.com/ articles/nature06536 doi: 10.1038/nature06536

Kash, J. C., Tumpey, T. M., Proll, S. C., Carter, V., Perwitasari, O., Thomas, M. J., ... Katze, M. G. (2006, October). Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature, 443(7111), 578–581. Retrieved 2022-02-14, from http://www.nature.com/articles/nature05181 doi: 10.1038/nature05181

Kawai, A., Yamamoto, Y., Nogimori, T., Takeshita, K., Yamamoto, T., & Yoshioka, Y. (2021, September). The Potential of Neuraminidase as an Antigen for Nasal Vaccines To Increase Cross-Protection against Influenza Viruses. Journal of Virology, 95(20). Retrieved 2022-02-14, from https://journals.asm.org/doi/10.1128/JVI.01180-21 doi: 10.1128/JVI.01180-21

Keele, B. F., Jones, J. H., Terio, K. A., Estes, J. D., Rudicell, R. S., Wilson, M. L., ... Hahn, B. H. (2009, July). Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature, 460(7254), 515–519. Retrieved 2022-02-14, from http://www.nature.com/articles/nature08200 doi: 10.1038/nature08200

Kelley, N., Jeltema, D., Duan, Y., & He, Y. (2019, July). The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. International Journal of Molecular Sciences, 20(13), 3328. Retrieved 2022-02-14, from https:// www.mdpi.com/1422-0067/20/13/3328 doi: 10.3390/ijms20133328

Knight, T. E. (2020, December). Severe Acute Respiratory Syndrome Coronavirus 2 and Coronavirus Disease 2019: A Clinical Overview and Primer. Biopreservation and Biobanking, 18(6), 492–502. Retrieved 2022-02-14, from https://www.liebertpub.com/doi/10.1089/bio.2020.0066 doi: 10.1089/bio.2020.0066

Kopecky-Bromberg, S. A., Martinez-Sobrido, L., Frieman, M., Baric, R. A., & Palese, P. (2007, January). Severe Acute Respiratory Syndrome Coronavirus Open Reading Frame (ORF) 3b, ORF 6, and Nucleocapsid Proteins Function as Interferon Antagonists. Journal of Virology, 81(2), 548–557. Retrieved 2022-02-14, from https://journals.asm.org/doi/10.1128/JVI.01782-06 doi: 10.1128/JVI.01782-06

Letko, M., Seifert, S. N., Olival, K. J., Plowright, R. K., & Munster, V. J. (2020, August). Bat-borne virus diversity, spillover and emergence. Nature Reviews Microbiology, 18(8), 461–471. Retrieved 2022-02-14, from http://www.nature.com/articles/s41579-020-0394-z doi: 10.1038/s41579-020-0394-z

L. Ferreira, V., H.L. Borba, H., de F. Bonetti, A., P. Leonart, L., & Pontarolo, R. (2019, April). Cytokines and Interferons: Types and Functions. In W. Ali Khan (Ed.), Autoantibodies and Cytokines. IntechOpen. Retrieved 2022-02-14, from https://www.intechopen.com/books/autoantibodies-and-cytokines/cytokines-and-interferons-types-and-functions doi: 10.5772/intechopen.74550

Li, N., Parrish, M., Chan, T. K., Yin, L., Rai, P., Yoshiyuki, Y., ... Engelward, B. P. (2015, August). Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration. Cellular and Molecular Life Sciences, 72(15), 2973–2988. Retrieved 2022-02-14, from http://link.springer.com/10.1007/s00018-015-1879-1 doi: 10.1007/s00018-015-1879-1

Lintermans, L. L., Stegeman, C. A., Heeringa, P., & Abdulahad, W. H. (2014, October). T Cells in Vascular Inflammatory Diseases. Frontiers in Immunology, 5. Retrieved 2022-02-14, from http://journal.frontiersin.org/article/10.3389/fimmu.2014.00504/abstract doi: 10.3389/fimmu.2014.00504

Liu, Z., Wang, Y., Wang, Y., Ning, Q., Zhang, Y., Gong, C., ... Wang, Q. (2016, June). Dexmedetomidine attenuates inflammatory reaction in the lung tissues of septic mice by activating cholinergic anti-inflammatory pathway. International Immunopharmacology, 35, 210–216. Retrieved 2022-02-14, from https://linkinghub.elsevier.com/retrieve/pii/S1567576916301370 doi: 10.1016/j.intimp.2016.04.003

Loh, E. H., Zambrana-Torrelio, C., Olival, K. J., Bogich, T. L., Johnson, C. K., Mazet, J. A. K., ... Daszak, P. (2015, July). Targeting Transmission Pathways for Emerging Zoonotic Disease Surveillance and Control. Vector-Borne and Zoonotic Diseases, 15(7), 432–437. Retrieved 2022-02-14, from https://www.liebertpub.com/doi/10.1089/vbz.2013.1563 doi: 10.1089/vbz.2013.1563

Lokugamage, K. G., Hage, A., de Vries, M., Valero-Jimenez, A. M., Schindewolf, C., Dittmann, M., ... Menachery, V. D. (2020, November). Type I Interferon Susceptibility Distinguishes SARS-CoV-2 from SARS-CoV. Journal of Virology, 94(23). Retrieved 2022-02-14, from https://journals.asm.org/doi/10.1128/JVI.01410-20 doi: 10.1128/JVI.01410-20

Mandl, J., Ahmed, R., Barreiro, L., Daszak, P., Epstein, J., Virgin, H., & Feinberg, M. (2015, January). Reservoir Host Immune Responses to Emerging Zoonotic Viruses. Cell, 160(1-2), 20–35. Retrieved 2022-02-14, from https://linkinghub.elsevier.com/retrieve/pii/S0092867414015736 doi: 10.1016/j.cell.2014.12.003

Mandl, J. N., Schneider, C., Schneider, D. S., & Baker, M. L. (2018, September). Going to Bat(s) for Studies of Disease Tolerance. FrontiersinImmunology,9,2112. Retrieved2022-02-14,fromhttps://www.frontiersin.org/article/10.3389/fimmu.2018.02112/full doi: 10.3389/fimmu.2018.02112

Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., & Manson, J. J. (2020, March). COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet, 395(10229), 1033–1034. Retrieved 2022-02-14, from https://linkinghub.elsevier.com/retrieve/pii/S0140673620306280 doi: 10.1016/S0140-6736(20)30628-0

Melo, A. K. G., Milby, K. M., Caparroz, A. L. M. A., Pinto, A. C. P. N., Santos, R. R. P., Rocha, A. P., ... Trevisani, V. F. M. (2021, June). Biomarkers of cytokine storm as red flags for severe and fatal COVID-19 cases: A living systematic review and meta-analysis. PLOS ONE, 16(6), e0253894. Retrieved 2022-02-14, from https://dx.plos.org/10.1371/journal.pone.0253894 doi: 10.1371/journal.pone.0253894

Menachery, V. D., Eisfeld, A. J., Schäfer, A., Josset, L., Sims, A. C., Proll, S., ... Baric, R. S. (2014, July). Pathogenic Influenza Viruses and Coronaviruses Utilize Similar and Contrasting Approaches To Control Interferon-Stimulated Gene

Responses. mBio, 5(3). Retrieved 2022-02-14, from https://journals.asm.org/doi/10.1128/mBio.01174-14 doi: 10.1128/mBio.01174-14

Middleton, D., Morrissy, C., van der Heide, B., Russell, G., Braun, M., Westbury, H., ... Daniels, P. (2007, May). Experimental Nipah Virus Infection in Pteropid Bats (Pteropus poliocephalus). Journal of Comparative Pathology, 136(4), 266–272. Retrieved 2022-02-14, from https://linkinghub.elsevier.com/retrieve/pii/S002199750700031X doi: 10.1016/j.jcpa.2007.03.002

Mohanram, V., Sköld, A. E., Bächle, S. M., Pathak, S. K., & Spetz, A.-L. (2013, April). IFN- Induces APOBEC3G, F, and A in Immature Dendritic Cells and Limits HIV-1 Spread to CD4 + T Cells. The Journal of Immunology, 190(7), 3346–3353. Retrieved 2022-02-14, from http://www.jimmunol.org/lookup/doi/10.4049/jimmunol.1201184 doi: 10.4049/jimmunol.1201184

Moore, J. B., & June, C. H. (2020, May). Cytokine release syndrome in severe COVID-19. Science, 368(6490), 473–474. Retrieved 2022-02-14, from https://www.science.org/doi/10.1126/science.abb8925 doi: 10.1126/science.abb8925

Narvaiza, I., Linfesty, D. C., Greener, B. N., Hakata, Y., Pintel, D. J., Logue, E., ... Weitzman, M. D. (2009, May). Deaminase-Independent Inhibition of Parvoviruses by the APOBEC3A Cytidine Deaminase. PLoS Pathogens, 5(5), e1000439. Retrieved 2022-02-14, from https://dx.plos.org/10.1371/journal.ppat.1000439 doi: 10.1371/journal.ppat.1000439

Organization, W. H., et al. (2020). Laboratory testing for coronavirus disease (covid-19) in suspected human cases: interim guidance, 19 march 2020 (Tech. Rep.). World Health Organization.

Paiardini, M., & Müller-Trutwin, M. (2013, July). HIV-associated chronic immune activation. Immunological Reviews, 254(1), 78–101. Retrieved 2022-02-14, from https://onlinelibrary.wiley.com/doi/10.1111/imr.12079 doi: 10.1111/imr.12079

Pandit, A., Bhalani, N., Bhushan, B. S., Koradia, P., Gargiya, S., Bhomia, V., & Kansagra, K. (2021, April). Efficacy and safety of pegylated interferon alfa-2b in moderate COVID-19: A phase II, randomized, controlled, open-label study. International Journal of Infectious Diseases, 105, 516–521. Retrieved 2022-02-14, from https://linkinghub.elsevier.com/retrieve/pii/S1201971221002320 doi: 10.1016/j.ijid.2021.03.015

Pandrea, I., & Apetrei, C. (2010, February). Where the Wild Things Are: Pathogenesis of SIV Infection in African Nonhuman Primate Hosts. Current HIV/AIDS Reports, 7(1), 28–36. Retrieved 2022-02-14, from http://link.springer.com/10.1007/s11904-009-0034-8 doi: 10.1007/s11904-009-0034-8

Plante, J. A., Liu, Y., Liu, J., Xia, H., Johnson, B. A., Lokugamage, K. G., ... Shi, P.-Y. (2021, April). Spike mutation D614G alters SARS-CoV-2 fitness. Nature, 592(7852), 116–121. Retrieved 2022-02-14, from https://www.nature.com/articles/s41586-020-2895-3 doi: 10.1038/s41586-020-2895-3

Rouse, B. T., & Sehrawat, S. (2010, July). Immunity and immunopathology to viruses: what decides the outcome? Nature Reviews Immunology, 10(7), 514–526. Retrieved 2022-02-14, from http://www.nature.com/articles/nri2802 doi: 10.1038/nri2802

Schneider, D. S., & Ayres, J. S. (2008, November). Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nature Reviews Immunology, 8(11), 889–895. Retrieved 2022-02-14, from http:// www.nature.com/articles/nri2432 doi: 10.1038/nri2432

Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020, July). COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24, 91–98. Retrieved 2022-02-14, from https://linkinghub.elsevier.com/retrieve/pii/S2090123220300540 doi: 10.1016/j.jare.2020.03.005

Silvestri, G., Sodora, D. L., Koup, R. A., Paiardini, M., O’Neil, S. P., McClure, H. M., ... Feinberg, M. B. (2003, March). Nonpathogenic SIV Infection of Sooty Mangabeys Is Characterized by Limited Bystander Immunopathology Despite Chronic High-Level Viremia. Immunity, 18(3), 441–452. Retrieved 2022-02-14, from https://linkinghub.elsevier.com/retrieve/pii/S1074761303000608 doi: 10.1016/S1074-7613(03)00060-8

Streicker, D. G., Turmelle, A. S., Vonhof, M. J., Kuzmin, I. V., McCracken, G. F., & Rupprecht, C. E. (2010, August). Host Phylogeny Constrains Cross-Species Emergence and Establishment of Rabies Virus in Bats. Science, 329(5992), 676–679. Retrieved 2022-02-14, from https://www.science.org/doi/10.1126/science.1188836 doi: 10.1126/science.1188836

Taylor, L. H., Latham, S. M., & woolhouse, M. E. (2001, July). Risk factors for human disease emergence. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1411), 983–989. Retrieved 2022-02-14, from https://royalsocietypublishing.org/doi/10.1098/rstb.2001.0888 doi: 10.1098/rstb.2001.0888

Virgin, H. (2014, March). The Virome in Mammalian Physiology and Disease. Cell, 157(1), 142–150. Retrieved 2022-02-14, from https://linkinghub.elsevier.com/retrieve/pii/S0092867414002311 doi: 10.1016/j.cell.2014.02.032

Walker, J. W., Han, B. A., Ott, I. M., & Drake, J. M. (2018, November). Transmissibility of emerging viral zoonoses. PLOS ONE, 13(11), e0206926. Retrieved 2022-02-14, from https://dx.plos.org/10.1371/journal.pone.0206926 doi: 10.1371/journal.pone.0206926

Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020, March). Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. Journal of Virology, 94(7). Retrieved 2022-02-14, from https://journals.asm.org/doi/10.1128/JVI.00127-20 doi: 10.1128/JVI.00127-20

Warren, C. J., & Sawyer, S. L. (2019, April). How host genetics dictates successful viral zoonosis. PLOS Biology, 17(4), e3000217. Retrieved 2022-02-14, from https://dx.plos.org/10.1371/journal.pbio.3000217 doi: 10.1371/journal.pbio.3000217

Woolhouse,M.E.,&Gowtage-Sequeria,S. (2005,December). HostRangeandEmergingandReemergingPathogens. Emerging Infectious Diseases, 11(12), 1842–1847. Retrieved 2022-02-14, from http://wwwnc.cdc.gov/eid/article/11/12/05-0997_article.htm doi: 10.3201/eid1112.050997

Xiao, K., Zhai, J., Feng, Y., Zhou, N., Zhang, X., Zou, J.-J., ... Shen, Y. (2020, July). Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature, 583(7815), 286–289. Retrieved 2022-02-14, from https://www.nature.com/articles/s41586-020-2313-x doi: 10.1038/s41586-020-2313-x

Yang, X., Dai, T., Zhou, X., Qian, H., Guo, R., Lei, L., ... Zhang, B. (2020, March). Analysis of adaptive immune cell populations and phenotypes in the patients infected by SARS-CoV-2 (preprint). Infectious Diseases (except HIV/AIDS). Retrieved 2022-02-14, from http://medrxiv.org/lookup/doi/10.1101/2020.03.23.20040675 doi: 10.1101/2020.03.23.20040675

Yuki, K., Fujiogi, M., & Koutsogiannaki, S. (2020, June). COVID-19 pathophysiology: A review. Clinical Immunology, 215, 108427. Retrieved 2022-02-14, from https://linkinghub.elsevier.com/retrieve/pii/S152166162030262X doi: 10.1016/j.clim.2020.108427

Zanoni, I., Granucci, F., & Broggi, A. (2017, November). Interferon (IFN)- Takes the Helm: Immunomodulatory Roles of Type III IFNs. Frontiers in Immunology, 8, 1661. Retrieved 2022-02-14, from http://journal.frontiersin.org/article/10.3389/fimmu.2017.01661/full doi: 10.3389/fimmu.2017.01661

Zhang, G., Cowled, C., Shi, Z., Huang, Z., Bishop-Lilly, K. A., Fang, X., ... Wang, J. (2013, January). Comparative Analysis of Bat Genomes Provides Insight into the Evolution of Flight and Immunity. Science, 339(6118), 456–460. Retrieved 2022-02-14, from https://www.science.org/doi/10.1126/science.1230835 doi: 10.1126/science.1230835

Zhou, P., Cowled, C., Mansell, A., Monaghan, P., Green, D., Wu, L., ... Baker, M. L. (2014, August). IRF7 in the Australian Black Flying Fox, Pteropus alecto: Evidence for a Unique Expression Pattern and Functional Conservation. PLoS ONE, 9(8), e103875. Retrieved 2022-02-14, from https://dx.plos.org/10.1371/journal.pone.0103875 doi: 10.1371/journal.pone.0103875

Zhou, Q., Chen, V., Shannon, C. P., Wei, X.-S., Xiang, X., Wang, X., ... Fish, E. N. (2020, May). Interferon-2b Treatment for COVID-19. Frontiers in Immunology, 11, 1061. Retrieved 2022-02-14, from https://www.frontiersin.org/articles/10.3389/fimmu.2020.01061/full doi: 10.3389/fimmu.2020.01061

Zhou, Y., Hong, Y., & Huang, H. (2016). Triptolide Attenuates Inflammatory Response in Membranous Glomerulo-Nephritis Rat via Downregulation of NF-κB Signaling Pathway. Kidney and Blood Pressure Research, 41(6), 901–910. Retrieved 2022-02-14, from https://www.karger.com/Article/FullText/452591 doi: 10.1159/000452591

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Journal of Education, Management and Development Studies

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...